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Experimental data substituted in the latter equation show that, over the range 
50-225 kg/ cm2

, t::.fJ has a constant value of "-'2.5 X 10- 5 cm2/ kg, which is at 
most 2.5 percent of fJ! . At 3555 kg/ cm2 t::.fJ is calculated to be 2.8 X 10- 6 cm2j kg 
or 5 percent of fJ!. The compressibility coefficient of solid He3 is therefore 
very similar to that of the fluid along the full range of tbe melting curve investi­
gated . For N a and K, the data of Bridgman (34) lead to values of 38 and 29 
percent, respectively, for t::.{3 /{3! at Pm = 1 kg/ cm2

• 

C. THERMAL PROPERTIES OF MELTING 

At the lower end of the Pm range for H e3
, the t::.S m results were combined with 

the entropy of saturated liquid SS"t , measured by Roberts and Sydoriak (35), 
and the entropy of compression t::.Scomp to give the entropy of solid. The values 
of t::.Scomp can be obtained through the formula 

j p", (a V) 
t::.Scomp = - . T dP. 

P,.t a P 

For the computation, the present measurements were used from 5 kg/ cm2 to 
Pm, and those of Sherman and Edeskuty (29), from P sat to 5 kg/ cm2

• The results 
over l.2° to 2.0°l( showed the entropy of solid at the melting curve (or Sa) to 
rise only from l.3-:1 to l.43 cal/ deg/ mol. Subtraction of the entropy change of 
compression and of transition in solid gave approximate S{3 values of l.32 to 
1.34. Tbe entropy associated witb a nuclear spin system in completely random 
orientation is S = R In 2 = l.38. It would appear that for solid He3 this is the 
major source of entl'Opy. 

Tbe values of t::.Sm listed in Tables I and II were derived from the Clapeyron 
equation using experimental t::. V m data and slopes computed from analytical 
expressions for the melting curves. For both He isotopes t:.S m increases \'litb Pm 
over the experimental range covered, although the increase becomes progressively 
smaller at higher melting pressures. This behavior is contrary to that of N2 
(15), which showed a decrease of t::.Sm with increasing Pm. Ebert (36), using 
melting properties for almost all materials studied to 1947 by Bridgman, found 
that t::.Sm and t::. V m always decrease with rising P '" and, indeed, extrapolate to 
zero at some finite high pressure, a criterion of a critical point. The behavior of 
He then appears to be anomalous, at least up to 3555 kg/ cm2

• The continued 
rise with pressure of t:.Sm is incompatible with the possibility of a critical point 
bet\veen solid and fluid. Since the question of a critical point in melting curves 
has yet to be resolved, it is interesting to extrapolate tbe He melting data to 
higher pressures than were measured. 

An expression for t:.Sm at high pressures can be derived in terms of Pm by 
combining Eqs. (1) and (3). When dt:.S ... / dP m is set equal to zero, one finds the 
solutions Pm = 4219 kg/cm2 and Pm = 3628 kg/cm2 for He3 and He\ respectively. 
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These melting pressures are only slightly rugher than the present experimental 
range and represent pressures at which maxima occur in !:::..Sm. At higher pres­
sures !:::..Sm decreases with P ,n and finally extrapolates to zero at P", = 79,500 
kg/ cm2 ( T m = 235°K ) for He3 and Pm = 63,900 kg/ cm2 ( T m = 197°K ) for 
He4

• Therefore, a critical point in the melting curve is not precluded by the avail­
able data. There is some indication that the melting thermal properties of the 
heliums become " normal" at sufficiently high pressures. 
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